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Abstract-Based on the Euler-Bernoulli Theory of the nonlinear inextensible plane elasticae, the concept of
funicular or momentless design for arches is reviewed and equations determining the buckling load and
transitional bendingmoments are derived. The results obtained for the buckling load of perabolicarches differs
considerably from those found in the literature. Finally, the shape and the variable cross-sectional area of a
funicular arch of constant stress is determined.

NOTATION
x, y spatial Catesian position of arch center line

s arch length along arch
I, j unit Cartesian vectors

1', n unit tangent and unit normal vectors to arc center line
T, N axial and transverse forces in arch

r position vector of a point on arch center line
R vector of internal forces

M bending moment
Ie, £ curvature at stressed and unstressed states respectively

8 inclination angle of l' with the x-axis
1= 1%1 +Iyj vector of applied external force per unit length of arch center line

p, q applied external force per unit arc length normal and parallel to arch
h height of symmetric arch
b horizontal span of symmetric arches

H maximum height of fill over buried arches
I total arc length of arch

w gravity loads on arches
Po axial compressive force at arch apex

-y specific weight of filion buried arches
a, II components of displacements of arch center line

1/1 variation in 8 due to detlection from funicular state
El bending resistance of arch
4T variation in T due to detlection from funicular state
Aw variation in the load w
Z Tr/f-(Elr/f,),
, x/b
'1/ y/h
g f/l
a (h/b)2
A Pob2/El

0'0 allowable normal stress
'Y' specific weight of arch material
w' gravity load on arch per unit horizontal direction
fJ 2-y' h/uo

INTRODUCTION
Arches, as structural members, provide esthetics and strength through their geometry. In recent
years their use has increased in a variety of sub-soil structures such as long span culverts and
grade separations[lJ. They continue to provide some of the most handsome forms of bridge
design while offering at the same time greater resistance and safety,

Development of analytical methods for arches has evolved from statically determinate two
and three hinged arches of an earlier time to the extensive investigations of Whitney[2J and
Leontiev [3J who provide equations for determination of bending and axial stresses in arches of
given geometry. Timoshenko and Young[4] point out the advantages of funicular design in
which an arch geometry is selected such that under permanent design loads, the arch remains in
a monentless state and experiences only axial stresses. This configuration is dependent upon the
load and renders the problem nonlinear.
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A momentless arch experiences bending stresses during the construction, when the design
load is only partially imposed, or during service when live loads are present. Another important
consideration is the question of buckling of funicular arches, which due to lack of bending
stresses, may occur without noticeable prior deflection or extensive concrete cracking.

These are topics that are considered in this paper within the framework of the Euler­
Bernoulli Theory of the nonlinear inextensible plane elasticae. After reviewing the theory for
the determination of funicular geometry, we develop the equations governing the bending stress
that may arise due to live load or partially imposed dead load. These equations as well as the
equations for the buckling load of the arch are obtained by superposition of small deformations
on the momentless state. This technique is standard in nonlinear elasticity and a justifiable
approximation in view of the fact that live loads on such structures are generally small
compared to the dead load.

We obtain the buckling loads of the parabolic arches and buried culverts supporting the
weight of a variable height of soil fill. In the case of parabolic arches, our result, verified also by
a perturbation analysis, differes considerably from the buckling load obtained by Dinnik[5] and
reported in [6].

Finally we consider the configuration of the optimum funicular arch.
This momentless arch of variable cross-section has constant axial stress and supports
its own weight and the load due to the superstructure. It is shown that in
the case of uniform-superstructure-Ioad, the arch geometry remains unaffected
by the magnitude of load, while its cross-sectional area is directly proportional to it. In contrast
to domes of constant stresses, in which large wall thickness near the base make them
esthetically undesirable, it is possible to obtain uniform depth for plane arches by increasing
arch width to provide the required area.

Similar questions have continued to attract the attention of investigators. Problems of
dynamic or multiple load buckling of arches have been considered by Schreyer and Masur[7],
Lo and Masur[8] and Plaut[9]. Amazigo[lO] has obtained optimal design against snap-buckling
of shallow arches. Farshad[ll] and Stadler[l2] have considered the questions of optimal and
natural forms for arches based upon different concepts of strength, efficiency or load bearing
capacity.

Billington's review [13] of the history of esthetics and mathematical development in concrete
arch bridges reveals that the architects and engineers of this century found elegance of forms in
the daring and slender shapes dictated by economy, efficiency and strength. Funicular design
for arches, like the membrane theory for shells, provide suitable means for optimum design of
arch type structures [14].

2. BASIC EQUATIONS

Referring to Fig. 1 we denote the position vector of a point P of the central line of a plane
arch by

r = ix(s) +jy(s)

in which s is the arc length. Force and moment equilibrium require

d
(.• ')$ =ds (...)

(2.1)

(2.2)

(2.3)

Here M is the bending moment, N the transverse shear, f ·the externally applied load per unit
arc length and R the internal force vector

R= Tf'+Nn.

The unit orthogonal vectors l' and n are given by

f' =r$ =i cos 8+j sin 8, n =- i sin 8+j cos 8

(2.4)

(2.5)
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Fig. 1. Buckling load of parabolic arches.

where (J is the angle that " makes with the horizontal direction at P. The moment curvature
relationship is expressed in the usual form

M=-EI(k-k) (2.6)

in which k is the curvature in the unstressed state and k the curvature in the stressed state
given by

k = n, . ,,= - If, • n = - (J,. (2.7)

The above description contains the essential attributes of the Euler-Bernoulli theory of the
static inextensible plane elasticae.

Scalar multiplication of (2.2) with " and n and utilization of (2.3) and (2.7» yields
respectively

T,-kM,+q=O

M,,+kT-p=O

where q and p are the tangential and normal components of external load

q=f''r, p=f·n.

(2.8)

(2.9)

(2.10)

3. MOMENTLESS DESIGN

We shall now consider funicular configuration when the loads are only of gravitational
nature. Therefore

f=-jw, M=O (3.1)

where w represents the total permanent design load consisting of the weight of the arch, and all
other gravitational loads.



568 I. G. TADJBAKHSH

Substituting (3.1) into (2.8)-(2.9) and using (2.10) yields

T. = wY.

kT=-wx•.

(3.2)

(3.3)

Dividing (3.2) by (3.3) and noting

(...). =(s.. f l(.. .)x =(l +y..2fl/2(.. ')x

k =- (l +y..2f3/2 yxx

we obtain

This equation can be integrated yielding

T = - Po(l +y/)1/2

(3.4)

(3.5)

where Po is an arbitrary constant which is generally positive and for a symmetric arch is the
compressive force at its apex. Equation (3.5) is valid for any variable load w.

To determine the shape of 'the arch, we square both sides of (3.2) and (3.3) and add, then

(3.6)

Substituting from (3.5) and simplyfying, (3.6) yields

(3.7)

For Po> 0 and for concave arches, the right choice of sign in (3.7) is negative. For any w, (3.7)
determines the shape of the arch and then the axial force T can be determined from (3.5). We
note here that (3.7) determines, for w=const, the catenary shape and parabolic arch, Fig. I, for
which w =wx.. w=const.

( 4X2)
y=h I-Jj2' (3.8)

Also note that for buried culverts as shown in Fig. 2 the load due to w_t of overburden is

w= r(H - y)x. = r(H - y){l +y/r1l2

in which r is the specific weight of the fill material. Equation (3.7) becomes

poYxx - rY = - H

with boundary conditions

y =h, Y.. =0 x =0; and y =0, x =b/2.

The solution is

Y=H -(H - h) cosh e: cosh- I H~ h)

4 ( -I H )-2
Po=p cosh h-h .

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Fig. 2. Buckling load of buried arches.

4. BUCKLING OF FUNICULAR ARCHES

Let us assume that a small additional load .:\walters the funicular state characterized by
equations developed in the previous section. Therefore, there will appear a bending moment M.
The axial force will now be T +.:\T and the Cartesion position of a point P on the central
line of the arch becomes x +u and y + v. The condition of inextensibility, ". . ". =1, will require
to linear order in the displacements u and v

Therefore we may assume

u, ="'y" v, =- "'x,.

(4.1)

(4.2)

Then (4.1) is satisfied by arbitrary '" and (2.7) determines that the variation in curvature k is
given by"" and therefore from (2.6)

M= - EI(k+.:\k-k) =-EI"',. (4.3)

Using this result in equilibrium equations (2.8)-(2.9) and retaining linear terms in .:\T and "', we
have

(.:\T), +k(EI",,), - k'flT =(.:\w)y,

k(.:\T)-(EI"")1I +(T",), =-(.:\w)x,.

Using the relation k =- 8" x, =cos 8, y, =sin 8 and introducing

Z= T",-(EI",,),

eqns (4.4)-(4.5) can be written in the more compact from

(.:\T), +8,z =(.:\w) sin 8

8,(.:\T)-Z, =(.:\w) cos 8.

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)
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The general solution of (4.7)-(4.8) can be obtained in terms of ~w(s) and 8(s). First note
that the homogeneous equations (~w = 0) admit of the solutions ~T = C cos (8 - 80), Z =
C sin (8 - 80) with C and 80 constants. By variation of parameters, it is readily established that
for ~w#O,

Z = ({ ~w ds )cos IJ +C sin (8 - 80) (4.9)

~T = ({ ~w dS) sin 8+C cos (8 -1J0). (4.10)

With Z and ~T thus found, (4.6) determines t/J when supplemented by appropriate boundary
conditions.

We now turn to the question of in-plane buckling of funicular arches. Instability is indicated
by the existence of a solution to the homogeneous form of (4.6). Substituting for T from (3.5)
and changing independent variable to x, (4.6) becomes

Introducing dimensionless quantities

~=x/b, 11 =y/h,g =112

a =(h/bf, A=Pob2/EI

(4.11) becomes

(4.11)

(4.12)

-1/2 < ~ < 1/2. (4.13)

For clamped boundary conditions we have v = Va = 0, which, with the aid of (4.2), imply

t/J =0 ~= ± 1/2

J
1/2

t/Jd~=O.
-1/2

Additionally we impose the normalizing condition

(4.14)

(4.15)

(4.16)

Using regular perturbation theory for eigenvalue problems[15l we seek solutions of the form

00

A(a) =~ Ana n•
n=O

The lowest order buckling problem is governed by the differential equation

(4.17)

(4.18)

t/Jou +Aot/Jo = 0

whose solution satisfying (4.14)-(4.16) is

-1/2< ~< 1/2 (4.19)

t/Jo= t/JOi = y'(2) sin i1T(~+D, i = 2,4,6, ...

We note that (4.15) rules out the odd indexed eigenfunctions and eigenvalues.

(4.20)

(4.21)
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The next order eigenvalue problem becomes
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with 1/1. satisfying (4.14)-(4.15) while (4.16) implies

f
l/2

1/101/11 dg =0.
-1/2

-1/2< g< 1/2 (4.22)

(4.23)

Existence of a solution to (4.22) requires that the nonhomogeneous terms on the right side be
orthogonal to 1/10' This condition determines AI

1 fl/2 fl/2
AI =--2 gl/l~~dg-Ao gl/l02dg.

-1/2 -1/2
(4.24)

For parabolic arches we have, from Section 3, Po = wba-1/2/8, g =64g2
• We find AI =

- 3217"2 and note that for a~ 1, A = Ao+aA r which can be written in the form

(4.25)

This relationship implies that wb 3/E/ has a maximum at (h/b) = (- Ao/JAd1/2 = 0.2042 with the
value of maximum being (l6/3)(h/b)Ao= 42.98.

We have calculated the eigenvalue A numerically for 0~ a ~ 1 by considering the Rayleigh
minimum

f
ll2

(l +agr ll2t/Jl dg
A = min ~'1J.4:.~2-----­'" f (l +ag)t/Jg)t/J2 dg

-1/2

(4.26)

J
and using the Ritz expansion 1/1 = I Cil/lOi• The convergent numerical results shown in Fig. 1
indicate a maximum buckling load given by wb 3

/ E/ =54 with which the two term perturbation
result is in fair agreement. The result obtained by Dinnik[4] and reported in Timoshenko and
Gere [5] indicates a value of 115 which is co~siderably larger than the values obtained here.
Numerical results, based on [4.26], is also obtained for culverts and are shown in Fig. 2. Table 1
shows the typical speed of convergence of numerical results for parabolic arches.

5. OPTIMUM DESIGN OF FUNICULAR ARCHES

We define an optimum arch as a momentless arch of variable cross-section and of constant
axial stress 0'0, i.e.

A =- VO'o.

Table 1. Ordinates and abscissas of the central line of the optimum arch

va= ),1

(h/b) J = 10 J =20

0.0 0.39478424E+02 0.39477814E+02

0.1 O.36654999E+02 0.36656143E+02

0.2 0.29891235E+02 O.29892685E+02

0.3 0.22344803E+02 0.22346024E+02

0.4 o.16011673E+02 0.16013290E+02

0.6 0.81360350E+02 0.81380701E+02

(5.1)
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The load on the arch will be assumed to consist of its weight and a variable load w'(x) per unit
horizontal direction, i.e.

w ='Y'A +w'x, (5.2)

where 'Y' is the weight per unit volume of the arch material and w'(x) represents the combined
load of the road bed, superstructure, spandrels and other loads that may be considered as static.

By substitution from (3.5) and (5.l) into (5.2) we find

Substitution of (5.3) into (3.7) yields the differential equation for the arch shape

'V' w'(x)
yxx = _...l- (l + yx2) - ---n-.

Uo ro

(5.3)

(5.4)

Numerical integration of (5.4) can proceed as an initial value problem. For example, for a
symmetric concave arch of horizontal span b and height h, we will have the initial conditions

y=h, :~=O at x=O. (5.5)

For an assumed value of Po, the integration can proceed until y = O. The value of x at which
y = 0 is the semi-span length b/2.

For the case Wi =const., (5.4) can be integrated explicitly. Noting that in each half-span
dy/dx is a single-valued function of y, we set

Yx =m(y) implying Yxx =mm,.

Substitution of this transformation into (5.4) leads to

This equation can be integrated and, after utilization of the condition y = h when m = 0 and
reverting to original variables, leads to

( w'u, )112{ [2' ] }1/2Yx=- 1+'Y'p: exp ~(h-Y) -} . (5.6)

Separating the variables again, integrating and using the condition y =h when x =0, we obtain

(
w'u, )1/2 fit { [2' ] }-I/21+ 'Y'P: ,x=, exp ~(h-Y) -1 dy.

The condition y =0 when x =b/2 establishes the relationship

(
W'u,)112 2fit { [2 I ]}1+ 'Y'P: =iJo exp ~(h-Y) -1 dy.

(5.7)

(5.8)

Elimination of Po between (5.7) and (5.8) leads to the governing equation for the arch central
curve

J: {exp [~(h- y)] -1r1l2

dy =(1-2;) L" {exp [~(h- y)] -1}dy. (5.9)
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This equation determines x as a function. of y for the interval 0~ x ~ b12. It may be noted that
the parameter w', the constant load per unit horizontal direcection, does not inftuence the arch
shape.

Introducing dimensionless quantities

(5.9) becomes

where

It can be shown that

~=l-B:!hll
F(l, (3)

F("I, (3) =L" {exp [f3(l- t)] - t 1
/
2 dt.

(5.10)

(5.11)

(5.12)

(5.13)

Thus, in the limit k-+O, (5.11) yields the parabolic shape ~=y(l-"I)' Tabular results for the
ordinate and abscissa of the arch for several values of f3 is shown in Table 2.

Determination of the axial force T and area A can proceed by using (3.5) and (5.1). We note
that (5.6) and (5.8) determine the slope dy/dx and the unknown parameter Po in terms of the
known quantities ')", 0'0, hand b. The result is

(5.14)

We note that although the shape of the arch is unaffected by w', both T and A are directly
proportional to w'. Thus the optimum arch with no load to support other than its own weight
assumes zero cross-sectional area. Also (5.14) indicates that the magnitude of axial force T
increases as the aspect ratio a decreases and, becomes infinite when a = 1/4P(l, (3). Analysis
of buckling strength of the optimum arch will impose a limit on the axial force. The procedure
for this was indicated in Section 4 and will not be pursued further here.

Table 2. Ordinates and abscissas of the central line of the optimum arch

y/h x/(b/2)

s - .050 S - .10 S - .15 S = .225 S - .275

0.0 1.00 1.00 1.00 1.00 1,00

0.1 .949 .949 .949 .949 .950

0.2 .895 .895 .896 .897 ,898

0.3 .838 .839 .841 .845 .848

0.4 .776 .779 .783 .791 .796

0.5 .710 .714 .721 .732 .741

0.6 .636 .643 .652 .669 .682

0.7 .553 .562 .574 .597 .614

0.8 .454 .466 .482 .511 .533

0.9 .324 .339 .359 .395 .423

1.0 .0 .0 .0 .0 .0
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